Grand Champion and $1,000 prize winner:
NosferatoCorp (Andrzej Janusz)
University of Warsaw, Faculty of Mathematics, Informatics and Mechanics

Runner Up:
UniQ (Vladimir Nikulin)
University of Queensland, Department of Mathematics

Bronze:
barneso (Jeremy Barnes)
Barneso Consulting

Commendations:
LatentView (C. Balakarmekan, R. Boobesh)

ADM1 (Tom Au, Rong Duan, Guangqin Ma, Rensheng Wang)
AT&T Labs, Inc.-Research, USA


Team Reports can be downloaded in a single PDF file here (3.74 MB)

Champions League - Final Standings
Medium Large
Team Name RMSE Rank Gini Rank RMSE Rank Gini Rank Points
NosferatoCorp 881.650 2 0.392 1 865.861 1 0.6941 2 9
UniQ 881.884 5 0.3879 2 866.582 3 0.6972 1 15
barneso 882.125 8 0.387 3 866.514 2 0.6923 4 23
LatentView 881.322 1 0.3693 6 866.809 7 0.692 6 33
Kranf 882.383 10 0.3819 4 867.172 9 0.6924 3 38
hugojair 881.722 3 0.3643 10 866.738 5 0.6884 9 41
Baseline1 881.98 6 0.3687 8 866.785 6 0.6903 8 42
Innovative analysts 882.879 12 0.3691 7 868.541 11 0.6918 7 55
axct 881.985 7 0.3674 9 870.801 15 0.6921 5 56
tkstks 881.755 4 0.3613 13 867.273 10 0.6831 10 57
EnsembleMaster09 882.656 11 0.2703 19 866.643 4 0.522 19 76
Edr2 882.211 9 0.3353 16 869.127 13 0.6671 15 81
DMLab 883.038 13 0.3153 18 866.985 8 0.635 18 83
The final say 889.101 19 0.3694 5 873.55 18 0.6759 12 84
Team_EXL 886.394 18 0.3421 15 868.555 12 0.6686 14 85
Baseline2 885.299 15 0.3635 12 873.219 17 0.6702 13 87
DreamTeam 885.412 16 0.3635 11 873.638 19 0.6778 11 87
TULIP 884.128 14 0.3217 17 869.216 14 0.662 17 93
albert2 894.071 20 0.3606 14 883.029 20 0.6638 16 106
Green Ensemble 886.367 17 0.1327 20 872.25 16 0.3572 20 109
TUB09 7858.22 21 0.0315 21 8120.22 21 0.1234 21 126

medium RMSE
Rank Team Name RMSE Method
1LatentView881.322
The Champions881.627Average - Nosferato,UniQ,barneso
2NosferatoCorp881.650crippledGMB
3hugojair881.722bipso_blr_so12-Nov-2009091014_MEDIUM_RM
4tkstks881.755Ensemble Selction
5UniQ881.884lm_m
6Baseline881.98Linear Regression Ensemble
7axct881.985s150
8barneso882.125Merged model
9Edr2882.211Single Linear Perceptron
10Kranf882.383elasticnet
The Ensemble882.457Average All Entries
11EnsembleMaster09882.656LASSO
12Innovative analysts882.879
13DMLab883.038
14ISMLL883.109
15BusinessResearch883.852MLP ensemble after stepwise selection
16TULIP884.128
17Combador884.643Please refer to the report
18Baseline885.299Linear Regression
19DreamTeam885.412M_RMSE_ScoreMY1column.txt
20Green Ensemble886.367
21Team_EXL886.394IE with random sets
22Baseline888.649Average Top 10 Experts
23The final say889.101
24KKUI TU Kosice889.844avg some models
25Baseline892.249Best Expert
26albert2894.071
27Baseline894.827Average All Experts
28Baseline947.88Worst Expert
29snustat1461.93random forest
30snustat_mk1461.93rf
31TUB097858.22ComSUM

medium AUC
Rank Team Name Gini Method
The Champions0.3928Average Rank - Nosferato,UniQ,barneso
1NosferatoCorp0.392008GeneticMetaBlender
2UniQ0.387888glm_m
3barneso0.386991Merged model
4Kranf0.381865elasticnet
5ADM10.381485M_ALL5_Score
The Ensemble0.3769Average Rank All Entries
6The final say0.369404
7LatentView0.369343
8Innovative analysts0.369093
9Baseline0.3687Logistic Regression Ensemble
10axct0.367385s50
11hugojair0.36432bipso_blr_so19-Nov-2009135305_auc_MEDIU
12DreamTeam0.363502LogReg1version
13Baseline0.3635Logistic Regression
14tkstks0.361324
15albert20.360562
16NeuroTech RDI0.360495Zoomed MLP
17Team_EXL0.342139NN+BLASTING+IE
18Edr20.335274Best Combo of 10 Experts by GINI
19Baseline0.3284Average Top 10 Experts
20Baseline0.3243Best Expert
21Baseline0.3218Average All Experts
22TULIP0.321704
23DMLab0.315261
24EnsembleMaster090.270304Gradient Boosting
25Baseline0.2522Worst Expert
26Green Ensemble0.13271
27TUB090.0315204Comb

large RMSE
Rank Team Name RMSE Method
1NosferatoCorp865.861crippledGMB
The Champions865.969Average - Nosferato,UniQ,barneso
The Ensemble866.160Average All Entries
2barneso866.514Merged model
3UniQ866.582lm_L
4EnsembleMaster09866.643LASSO
5hugojair866.738bipso_blr_so19-Nov-2009131111_LARGE_RMS
6Baseline866.785Linear Regression Ensemble
7LatentView866.809
8DMLab866.985General linear
9Kranf867.172elasticnet
10tkstks867.273RSS003
11ISMLL867.875
12BusinessResearch868.312MLP ensemble after stepwise selection
13Innovative analysts868.541
14Team_EXL868.555Coefficient Blasting and bootstrapping
15Edr2869.127Single Linear Perceptron
16TULIP869.216
17axct870.801s300
18Green Ensemble872.25
19Baseline873.204Average Top 10 Experts
20Baseline873.219Linear Regression
21The final say873.55
22DreamTeam873.638Reg1version
23Baseline880.269Best Expert
24Baseline880.766Average All Experts
25albert2883.029
26Baseline933.278Worst Expert
27TUB098120.22

large AUC
Rank Team Name Gini Method
1ADM10.698372L_ALL7_Score
The Champions0.697159Average Rank - Nosferato,UniQ,barneso
2UniQ0.697161glm_L
3NosferatoCorp0.69407GeneticMetaBlender
The Ensemble0.69240Ave Rank All Entries
4Kranf0.692358elasticnet
5barneso0.692293Merged model
6axct0.692122s6
7LatentView0.691992
8Innovative analysts0.691773
9Baseline0.6903Logistic Regression Ensemble
10hugojair0.688352bipso_blr_so19-Nov-2009171830_auc_LARGe
11tkstks0.683087es006
12NeuroTech RDI0.681153MLP
13DreamTeam0.677822L_AUC_ScoreMY1column.txt
14The final say0.675946
15Baseline0.6702Logistic Regression
16Team_EXL0.668552Blasting + PCA + NN
17Edr20.667128Best Combo of 10 Experts by GINI
18albert20.663776
19TULIP0.661976
20Baseline0.6592Average Top 10 Experts
21Baseline0.6532Average All Experts
22Baseline0.6526Best Expert
23DMLab0.635049
24Baseline0.5564Worst Expert
25EnsembleMaster090.521953LASSO
26Green Ensemble0.357228regression tree
27TUB090.123444Comb
Save as PDF